

The specification for:

TLM Level 4 Award in Hydrogen Safety Practises

The Level 4 Award in Hydrogen Safety practises has been designed as the natural progression from the *Level 3 Award in Introduction to Hydrogen Safety Practises*. While the Level 3 qualification established a foundation in the safe handling, storage, and transportation of hydrogen, the Level 4 extends this knowledge into advanced technical, scientific, and regulatory contexts.

This qualification supports learners in deepening their understanding of hydrogen as an energy carrier, analysing production methods, and evaluating applications across transport, industry, and energy systems. It also builds competence in applying advanced risk assessment techniques, developing compliance strategies, and engaging with UK and international regulatory frameworks.

The qualification is intended for those already working in, or aspiring to senior roles within, the hydrogen and wider energy infrastructure sector. It provides:

- the opportunity to progress from operational knowledge to advanced analytical and evaluative skills
- a focus on designing, applying, and reviewing safety and compliance strategies in real-world contexts
- a pathway into higher-level technical, safety, or management roles within hydrogen-related industries

By completing this qualification, learners will demonstrate the ability to critically analyse hydrogen safety challenges, evaluate sector innovations, and design practical strategies that support both safety and innovation in hydrogen adoption.

© TLM 2025. Some rights reserved. You may copy some or all of this publication under the terms of the Creative Commons Attribution-Share Alike license 3.0.

The Regulated Qualifications Framework (RQF) was designed by the UK government's Qualifications and Curriculum Development Agency now replaced by Ofqual. The RQF is referenced to the European Qualifications Framework devised by the European Union

The assessment model for the qualifications presented in this publication was designed by TLM in consultation with Neil Minshall from Hydrogen Safe

1. For those in a hurry!	4
2. Introduction	5
3. Summary of Qualification Specification	6
4. Qualification Content	7
5. Support	8
6. Registration & Procedures	9
7. Other Considerations	10
Annexe A	11
Level 4 Award in Hydrogen Safety Practises - Unit assessment - coursework guidance	11
Mandatory Unit 1 – Level 4, Unit 1 – Advanced Hydrogen Science & Applications	12
Mandatory Unit 2 – Level 4, Unit 2 – Hydrogen Safety, Risk & Regulatory Management	12

1. For those in a hurry!

Please read the rest of the book later as the details are important!

- 1.1 TLM's assessment model is common to most of its qualifications. It is based on competence-based assessment of coursework using a portfolio of evidence and supported by a free optional cloud-based evidence management system.
- 1.2 Learners must demonstrate competence against the assessment criteria from their day-to-day work and the teacher assessor must verify that they are competent in relation to the general level descriptor using indicative assessment criteria. TLM's external moderator will check the judgements and the quality of the evidence and provide feedback. This process is not graded; the intention is that it is a flexible way of checking basic practical competence in the subject at the qualification's framework level.

Procedures

- 1.3 The first thing to do is to arrange assessor training with TLM. TLM trains at least one assessor as Principal Assessor who must accept responsibility for standards within the Centre. The Principal Assessor can train and appoint assessors within the Centre as long as they are competent to take on the work and are willing to sign an agreement on the web site to uphold standards.
- 1.4 TLM will provide initial training in the pedagogical model and using the supporting technologies to provide the evidence needed. The purpose is to get you started and then we provide on-going support to ensure you are confident and we can work as a professional partnership. We advise new Centres to do some coursework assessment early so that they can receive feedback and quickly become confident in doing routine coursework assessment. Our aim is to make this no more onerous than normal routine assessment that anyone would do as a normal part of the teaching job. This gives more time to focus on teaching and therefore to support raising attainment.

2. Introduction

The Level 4 Award in Hydrogen Safety Practises as been designed as the natural progression from the *Level 3 Award in Introduction to Hydrogen Safety Practises*. While the Level 3 qualification established a foundation in the safe handling, storage, and transportation of hydrogen, the Level 4 extends this knowledge into advanced technical, scientific, and regulatory contexts.

This qualification supports learners in deepening their understanding of hydrogen as an energy carrier, analysing production methods, and evaluating applications across transport, industry, and energy systems. It also builds competence in applying advanced risk assessment techniques, developing compliance strategies, and engaging with UK and international regulatory frameworks.

The qualification is intended for those already working in, or aspiring to senior roles within, the hydrogen and wider energy infrastructure sector. It provides:

- the opportunity to progress from operational knowledge to advanced analytical and evaluative skills
- a focus on designing, applying, and reviewing safety and compliance strategies in real-world contexts
- a pathway into higher-level technical, safety, or management roles within hydrogen-related industries

By completing this qualification, learners will demonstrate the ability to critically analyse hydrogen safety challenges, evaluate sector innovations, and design practical strategies that support both safety and innovation in hydrogen adoption.

2.1 Level 4 Award in Hydrogen Safety practises

The objective of the qualification is to prepare learners with the knowledge and confidence to develop their own skills.

Mandatory

Unit 1 – Advanced Hydrogen Science & Applications (4 credits).

Unit 2 – Hydrogen Safety, Risk & Regulatory Management (4 credits)

3. Summary of Qualification Specification

3.1 Level 4 Award (Annexe A)

The Level 4 award is designed to support professionals in, or aiming to work within, the hydrogen and wider energy infrastructure industry by extending their knowledge and skills beyond the foundation established at Level 3. It enables learners to critically analyse the scientific and technical properties of hydrogen, evaluate production methods and their wider implications, and apply advanced approaches to risk management, safety, and compliance. The qualification prepares learners for more senior technical or managerial responsibilities by developing their capacity to interpret regulatory frameworks, design effective safety strategies, and assess hydrogen's role in emerging energy systems, while maintaining a clear focus on industry best practice and public safety

Qualification Title: Level 4 Award in Hydrogen Safety Practises

Qualification Number: XXX/XXXX/X

Qualification Level: Level 4

Total Credits: 8

Guided Learning Hours: 60 **Total Qualification Time:** 80

Assessment Methods: Coursework, E-assessment, Portfolio of Evidence

Assessment

Learners must demonstrate competence against the assessment criteria from their communication and involvement with the training materials and the trainer assessor must verify that they are competent in relation to the general level descriptor using indicative assessment criteria. TLM's external moderator will check the judgements and the quality of the evidence and provide feedback. This process is not graded, the intention is that it is a flexible way of checking basic practical competence in the subject at the qualification's framework level.

Mandatory Unit: Unit 1 - Advanced Hydrogen Science & Applications (4 credits).

Mandatory Unit: Unit 2 - Hydrogen Safety, Risk & Regulatory Management (4 credits)

3.5 Assessment

The internally assessed, externally moderated coursework for all qualifications is pass/fail but by submitting the evidence for external moderation, feedback can be given to the teacher on areas to improve for resubmission.

Evidence must be provided against the unit assessment criteria from practical tasks related to the learners' everyday work supported by teacher observations, portfolio completed, and or activities in line with the learning materials

The way evidence is gathered is up to the assessor, the only requirement is that it clearly supports the judgements against the assessment criteria and the relevant learning outcomes.

If on moderation the account manager finds gaps in evidence relating to a particular candidate, they will request more evidence before approving the award or the unit certificate. Assessors must then adjust their work to ensure all their learners are providing the appropriate level and breadth of evidence.

We encourage early submission of at least some evidence so that assessors are confident from the feedback that what they are providing is sufficient. In this way we can maintain standards while supporting improved efficiency.

4. Qualification Content

Mandatory	Optional (for reference)
1 CREDITS	None
Mandatory Unit: Unit 1 – Advanced Hydrogen Science & Applications (4 credits). Mandatory Unit: Unit 2 - Hydrogen Safety, Risk & Regulatory Management (4 credits)	

5. Support

Guidance and Assistance

- 5.1 There is further guidance for coursework assessment on the TLM web site. All centres have an assigned Account Manager who will be pleased to help at any time. Our aim is to give professional assessors, most of whom are qualified tutors, the confidence to make judgements with a minimum of bureaucracy so that they can focus their time on maintaining their professional knowledge, skills and supporting learning through effective teaching rather than "chasing paper".
 - There is often a confusion between bureaucracy and rigour, since unnecessarily complex bureaucracy can actually detract from rigour by obscuring the importance of the outcomes.
- **5.2 Web sites** TLM provides support through cloud-based systems. Providing assessment grades and the management of certification through the TLM Centre management system is mandatory and all assessors are provided with training in its use.
 - It is simply a matter of recording learner competence against the unit criteria as the evidence is collected and claiming a certificate on behalf of the learner when a unit has been fully assessed.
- **5.3** Use of the online community learning site is entirely optional. It offers a streamlined way for learners to submit evidence and for assessors and verifiers to manage feedback and tracking, reducing administrative workload for centres that choose to use it.
- **Telephone** and e-mail support are available to all Centres. There is a general convention of first-name.secondname@tlm.org.uk for e-mail addresses.

6. Registration & Procedures

Registration

6.1 TLM's registration model allows centres to enter learners at times convenient to them. There are no late entry fees and no additional fees should a learner fail to produce evidence at a level but can meet the criteria at a lower level. This can reduce costs to the centres when compared to other qualifications.

There are no fees for replacement certificates or verification of certificates because all certificates can be directly authenticated against TLM's secure database.

Internal standardisation

6.2 The Principal Assessor has the ultimate responsibility for consistency in assessment standards within a centre. All assessors have signed a contract agreeing to uphold standards and should therefore co-operate with the Principal Assessor and Account Manager at TLM to ensure that standards across the centre are consistent.

It is advisable to send work samples to TLM early to check that evidence is at the right standard so that there is time to make any adjustments necessary to the course and learner expectations.

TLM will generally check a higher quantity of work from new assessors and feedback to ensure that they are confident to make appropriate judgements over time. This reduces risk and improves effi-

Authentication

ciency in the longer term.

- 6.3 All assessors must take reasonable steps to ensure that any coursework evidence submitted by candidates is a true reflection of the candidates' competence. This is in keeping with the assessor undertaking to uphold and maintain standards in the contract with TLM.
- **6.4** Certificates can be easily authenticated online by entering the certificate number or scanning the QR code printed on the certificate.

This service is free of charge and encourages routine verification, which helps strengthen overall security.

When authentication is not quick and accessible, the risk of certificate fraud increases significantly.

With the growing sophistication of technologies—especially Al-powered image generation—creating highly convincing forgeries is becoming easier and more common, making robust authentication methods more important than ever.

7. Other Considerations

Access arrangements and special requirements

7.1 All TLM's qualifications are intended to be accessible, as widely as possible.

Please refer to the Annex for further information.

Centres should contact TLM if they have any questions related to accessibility issues

Language

7.2 The language for provision of this qualification is English only. This will only change if we have a significant demand in another language that is sufficient to cover the additional costs involved.

Malpractice

7.3 TLM has comprehensive policies and procedures for dealing with malpractice. These are documented with links on the web site at https://tlm.org.uk/policy-download-centre/

Assessors should be familiar with these policies and make them clear to candidates. Assessors should inform their account manager if they suspect any instance of malpractice that could have a material effect on the outcome of any assessments, either for themselves or colleagues.

This is part of the upholding of standards that is part of the contract with TLM.

Equality of opportunity

7.4 TLM promotes equality of opportunity through policies and procedures. These are again documented in detail on the web site.

Resources, Support and Training

- **7.5** A clear goal is to enable learners to support all their IT user needs using resources freely and legally available from the internet. This is related directly to national policies for inclusion and equality of opportunity.
- 7.6 TLM does not require centres to use free and open-source software (FOSS), but it actively encourages its use, particularly in the context of embedded systems development and operations.

Most of the essential tools required to support the practical elements of this qualification, such as Linux distributions, code editors, compilers, network analysis tools, and system monitoring utilities, are freely available and widely used across industry.

By equipping learners with the skills and confidence to work with open-source technologies, we not only promote independence and digital resilience but also support the growing demand for professionals who can operate effectively in open, collaborative development environments.

The use of open-source resources also provides a cost-effective solution for schools, training providers, and learners, aligning with sustainable and inclusive approaches to digital education.

Annexe A

Level 4 Award in Hydrogen Safety Practises- Unit assessment - coursework guidance

The Level 4 learner has a broad knowledge and understanding of concepts, principles and theories in an area of study or work, enabling them to address complex problems and apply advanced methods of analysis. Holders can critically evaluate information, concepts and approaches, and make informed judgements in contexts where data may be incomplete or contested.

AND/OR

Holders can select and apply appropriate cognitive and practical skills to plan, implement and review strategies in situations that involve non-routine and unpredictable challenges. They can evaluate the effectiveness of different approaches, adapt methods to context, and use evidence to justify decisions and recommendations

Moderation/verification: The assessor should keep a record of assessment judgements made for each candidate and make notes of any significant issues for any candidate. They must be prepared to enter into dialogue with their Account Manager and provide their assessment records to the Account Manager through the on-line mark book. They should be prepared to provide evidence as a basis for their judgements should it be required by the Principal Assessor or their Account Manager/external moderator. Before authorising certification, the Account Manager must be satisfied that the assessor's judgements are sound.

General Information

The Level 4 qualification has the following characteristics for learners:

- Apply advanced knowledge and understanding to complex, non-routine problems across varied and unpredictable contexts.
- Analyse and evaluate information, concepts, and methods to inform effective decision-making and practice.
- · Exercise autonomy and sound judgement in planning, managing, and reviewing activities or projects.
- Take responsibility for developing their own practice and, where appropriate, for guiding or influencing the work of others.
- Integrate theoretical insight with reflective practice to enhance learning outcomes and professional effectiveness.
- Operate with a high degree of independence and accountability, adapting approaches to meet diverse professional and educational needs.
- These characteristics demonstrate the advanced analytical capability, autonomy, and professional competence expected of a UK Level 4 outcome, supporting clear progression to higher-level qualifications or leadership roles in education

Requirements

- All assessed work must demonstrably meet Level 4 standards as defined within the qualification specification and Ofqual's RQF level descriptors.
- Assessors must, as a minimum, record assessment judgements within the online mark book on the TLM certification site.
- Evidence supporting assessment outcomes should be drawn from the learner's day-to-day work and may include lesson plans, schemes of work, or other relevant artefacts.
- Learning approaches should be adapted to meet differing learner needs, including those requiring additional support.
- The Certificate normally requires around 60 guided learning hours for new learners, with recognition of prior learning permitted where appropriate.
- Certification is based on outcomes.
- The learner must securely meet all Level 4 criteria to achieve.

<u>Level 4, Unit 1 – Advanced Hydrogen Science & Applications</u>

1. Understand the advanced properties of hydrogen as an energy carrier	2. Understand hydrogen production methods and their wider implications	3.Understand the applications of hydrogen in current and emerging sectors
1.1 I can analyse the physical and chemical properties of hydrogen	2.1 I can critically compare established hydrogen production methods in terms of cost, safety, and efficiency.	3.1 I can assess hydrogen's role in transport, industry, and energy systems.
1.2 I can explain how the physical and chemical properties influence safety and application.	2.2 I can analyse the environmental and sustainability impacts of different hydrogen production technologies.	3.2 I can evaluate the safety considerations associated with hydrogen use in public-facing and high-risk settings.
1.3 I can compare hydrogen's behaviour to other fuels.	2.3 I can evaluate emerging hydrogen production techniques	3.3 I can describe the potential of including hydrogen as part of an energy infrastructure.
1.4 I can evaluate the implications of adopting hydrogen in industry, considering safety, technical feasibility, and wider sector impact	2.4 I can explain the potential advantages and limitations of emerging hydrogen production.	3.4 I can explain the challenges for the use of hydrogen.
1.5 I can evaluate hydrogen isotopes and their relevance to industrial and research contexts.	2.5 I can analyse how emerging hydrogen production techniques may influence future developments in the hydrogen sector.	3.5 I can analyse current data about trends in hydrogen demand and innovation

<u>Level 4, Unit 2 – Hydrogen Safety, Risk & Regulatory Management</u>

1. Understand how to apply advanced risk assessment techniques to hydrogen systems	2. Understand hazard mitigation strategies and emergency response planning	3. Understand hydrogen storage and distribution safety considerations	4. Understand regulatory frameworks and compliance requirements for hydrogen use	5. Understand how to design safety and compliance strategies for hydrogen systems
1.1 I can conduct detailed risk assessments for hydrogen production, storage, and transport.	2.1 I can evaluate hazard mitigation strategies in hydrogen operations	3.1 I can analyse the technical and safety implications of different hydrogen storage methods.	4.1 I can interpret key UK regulations governing hydrogen use	5.1 I can design a compliance plan that aligns with industry best practice and regulatory requirements
1.2 I can compare qualitative and quantitative risk assessment approaches.	2.2 I can recommend improvements to hazard mitigation strategies for different operational contexts.	3.2 I can evaluate distribution systems for hydrogen	4.2 I can explain the practical application of UK hydrogen regulations.	5.2 I can evaluate strategic decisions around safety and compliance using evidence and sector benchmarks.
1.3 I can evaluate when to apply qualitative or quantitative risk assessment approaches in different scenarios	2.3 I can evaluate an emergency response plan for a hydrogen-related incident.	3.3 I can explain associated risks for hydrogen distribution.	4.3 I can compare UK and international codes, standards, and certification processes for hydrogen.	5.3 I can assess how effective safety and compliance strategies are in reducing risk and supporting innovation.
1.4 I can evaluate case studies of hydrogen-related incidents to identify lessons for risk management.	2.4 I can describe the effective- ness of detection, monitoring, and suppression systems in man- aging hydrogen risks.	3.4 I can analyse data on hydrogen embrittlement to identify its risks and implications	4.4 I can evaluate the implications of regulatory non-compliance for industry and public safety	
		3.5 I can propose strategies to minimise the impact of hydrogen embrittlement		

Teacher Guidance Notes

<u>Level 4, Unit 1 – Hydrogen Safety, Risk & Regulatory Management</u>

1.1: I can analyse the physical and chemical properties of hydrogen.

- Encourage learners to move beyond description into analysis, considering how hydrogen's unique properties influence safety, handling, and potential applications.
- Link to laboratory or industrial data where possible.

1.2: I can explain how the physical and chemical properties influence safety and application.

• Prompt learners to connect theory with practice. For example, how hydrogen's small molecular size affects containment, or how its wide flammability range impacts safety planning.

1.3: I can compare hydrogen's behaviour to other fuels.

- Facilitate comparisons with natural gas, petrol, or electricity, highlighting efficiency, risk, infrastructure demands, and environmental impact.
- Encourage critical evaluation, not just similarities/differences.

1.4: I can evaluate the implications of adopting hydrogen in industry, considering safety, technical feasibility, and wider sector impact.

- Promote case study use, such as transport fleets or industrial heating, to explore feasibility, costs, and safety challenges.
- Learners should balance innovation with risk.

1.5: I can evaluate hydrogen isotopes and their relevance to industrial and research contexts.

- Introduce isotopes like deuterium and tritium, discussing their specialist uses (e.g. nuclear fusion research).
- Guide learners to distinguish between mainstream and niche applications.

2.1: I can critically compare established hydrogen production methods in terms of cost, safety, and efficiency.

- Encourage learners to compare methods such as steam methane reforming, electrolysis, and biomass gasification.
- Analysis should weigh financial, environmental, and safety considerations.

2.2: I can analyse the environmental and sustainability impacts of different hydrogen production technologies.

• Use life cycle assessment approaches. Learners should consider carbon intensity, water usage, and long-term viability.

2.3: I can evaluate emerging hydrogen production techniques.

- Explore methods like photocatalysis or advanced electrolysers.
- Emphasise the need to weigh potential benefits against current technological limitations.

2.4: I can explain the potential advantages and limitations of emerging hydrogen production.

• Support critical thinking by asking learners to forecast scalability, economic viability, and safety issues that could influence adoption.

2.5: I can analyse how emerging hydrogen production techniques may influence future developments in the hydrogen sector.

Encourage learners to connect innovations with market trends, government policy, and infrastructure planning.

3.1: I can assess hydrogen's role in transport, industry, and energy systems.

Promote sector-by-sector analysis, focusing on practical applications, infrastructure requirements, and cost-benefit trade-offs.

3.2: I can evaluate the safety considerations associated with hydrogen use in public-facing and high-risk settings.

• Learners should look at refuelling stations, aviation, or healthcare contexts. Use accident case studies where appropriate.

3.3: I can describe the potential of including hydrogen as part of an energy infrastructure.

• Support learners to examine integration with electricity grids, storage systems, and renewable energy networks.

3.4: I can explain the challenges for the use of hydrogen.

Encourage honest critique of barriers: cost, infrastructure, public perception, and technological maturity.

3.5: I can analyse current data about trends in hydrogen demand and innovation.

• Promote the use of up-to-date reports, market forecasts, and innovation roadmaps. Learners should evidence claims with data.

<u>Level 4, Unit 2 – Hydrogen Safety, Risk & Regulatory Management</u>

1.1: I can conduct detailed risk assessments for hydrogen production, storage, and transport.

- Guide learners to apply structured methodologies (e.g. HAZOP, FMEA).
- Encourage depth by using industry case studies and complex scenarios.

1.2: I can compare qualitative and quantitative risk assessment approaches.

Promote critical discussion of when qualitative checklists suffice versus when data-driven models are essential.

1.3: I can evaluate when to apply qualitative or quantitative risk assessment approaches in different scenarios.

- Encourage learners to consider cost, time, and context in selecting methods.
- Real-world incident reports can illustrate poor method choice.

1.4: I can evaluate case studies of hydrogen-related incidents to identify lessons for risk management.

- Use historical incidents (e.g. Hindenburg, modern industrial accidents).
- Learners should identify root causes and transfer lessons to current practice.

2.1: I can evaluate hazard mitigation strategies in hydrogen operations.

Encourage learners to compare engineering, administrative, and PPE-based controls, weighing effectiveness in specific contexts.

2.2: I can recommend improvements to hazard mitigation strategies for different operational contexts.

Promote application of best practice standards and innovation (e.g. sensor technology).

2.3: I can evaluate an emergency response plan for a hydrogen-related incident.

• Learners should critique existing plans against regulatory requirements and practical effectiveness.

2.4: I can describe the effectiveness of detection, monitoring, and suppression systems in managing hydrogen risks.

- Discuss technologies such as hydrogen sensors, flame detectors, and automatic shutdowns.
- Learners should assess limitations as well as strengths.

3.1: I can analyse the technical and safety implications of different hydrogen storage methods.

- Support analysis of high-pressure tanks, cryogenic storage, and solid-state options.
- Encourage evaluation of both material science and operational risk.

3.2: I can evaluate distribution systems for hydrogen.

- Promote examination of pipelines, road transport, and shipping.
- Learners should balance scalability, cost, and safety considerations.

3.3: I can explain associated risks for hydrogen distribution.

• Encourage learners to link properties of hydrogen to risks (e.g. embrittlement, leaks, ignition).

3.4: I can analyse data on hydrogen embrittlement to identify its risks and implications.

Encourage learners to explore material science evidence, industry standards, and mitigation methods.

3.5: I can propose strategies to minimise the impact of hydrogen embrittlement.

Promote practical suggestions such as material selection, coatings, and operational controls.

4.1: I can interpret key UK regulations governing hydrogen use.

Encourage learners to examine legislation such as COMAH, DSEAR, and HSE guidance.

4.2: I can explain the practical application of UK hydrogen regulations.

• Support exploration of compliance examples from industry operations.

4.3: I can compare UK and international codes, standards, and certification processes for hydrogen.

Guide learners to examine ISO, IEC, and regional standards. Promote awareness of global harmonisation challenges.

4.4: I can evaluate the implications of regulatory non-compliance for industry and public safety.

• Encourage learners to consider financial, reputational, and human consequences of breaches.

5.1: I can design a compliance plan that aligns with industry best practice and regulatory requirements.

• Learners should create structured plans with clear responsibilities, monitoring, and review processes.

5.2: I can evaluate strategic decisions around safety and compliance using evidence and sector benchmarks.

• Promote critical reflection on how evidence-based approaches improve both safety and innovation.

5.3: I can assess how effective safety and compliance strategies are in reducing risk and supporting innovation.

• Encourage learners to balance regulatory obligations with the need to enable new hydrogen technologies.

Accessibility Policies

TLM firmly believes that every learner should have an equal chance to excel in their studies and assessments, regardless of any disabilities they may have. To achieve this goal, TLM has developed a comprehensive and well-structured reasonable adjustment policy that is specifically tailored to cater to the needs of learners with disabilities. This policy is not only an essential aspect of TLM's commitment to inclusivity but also an integral part of creating a diverse and accessible learning environment.

The reasonable adjustment policy is designed to support learners with disabilities in various ways. It encompasses a range of accommodations, such as providing additional time for examinations, offering alternative formats for study materials, permitting the use of assistive technology, arranging for sign language interpreters, and ensuring accessible physical facilities. The implementation of these reasonable adjustments is meticulously carried out to ensure that they meet the individual needs of each learner, acknowledging the unique challenges they may face.

TLM is dedicated to making the reasonable adjustment process transparent and easily accessible for all stakeholders. Thus, the details of the policy are made readily available to all, including learners, educators, and TLM Centres. These details can be found on TLM's official website, ensuring that everyone is well-informed about the support and accommodations available to learners with disabilities.

Additionally, TLM Centres play a crucial role in facilitating this process. They are empowered to submit requests for other reasonable adjustments on behalf of learners, based on their specific requirements and circumstances.

TLM firmly believes that promoting a culture of inclusivity and understanding is fundamental to fostering an environment where learners can thrive, irrespective of their abilities or disabilities. By continuously evaluating and refining its reasonable adjustment policy, TLM ensures that it remains up-to-date with the best practices in the field of inclusive education.

TLM Qualifications is deeply committed to its duty as an awarding organisation to provide reasonable adjustments for learners with disabilities in accordance with the Equality Act 2010. By adhering to its comprehensive reasonable adjustment policy and collaborating closely with TLM Centres, TLM strives to create a learning landscape that supports and empowers all learners, ensuring they can reach their full potential and achieve academic success

TLM Accessibility Policy: https://tlm.org.uk/policies/general-requirements-for-regulated-qualifications/#3

TLM reasonable adjustment policy: https://tlm.org.uk/reasonable-adjustments-and-special-considerations-policy-2/

TLM reasonable adjustments request form: https://tlm.org.uk/wp-content/uploads/2022/03/TLM-RASC-form-1.docx

TLM reasonable adjustments request form: https://tlm.org.uk/wp-content/uploads/2022/03/TLM-RASC-form-1.docx

Alignment with the CASLO Approach

This qualification has been designed in line with the principles of the CASLO approach, ensuring each unit is clearly defined in terms of learning outcomes and assessment criteria, with outcomes structured around observable knowledge, skills, and behaviours. In doing so, we embrace CASLO's strengths in transparency, clarity, and learner-centred planning for curriculum, teaching, and assessment.

While we recognise that CASLO qualifications are typically characterised by a mastery model, whereby all outcomes must be met to achieve a pass, we have chosen to adopt a holistic approach to evidence collection and assessment. This means learners may demonstrate their achievement of outcomes across multiple pieces of evidence, and assessors may consider a broader context of performance, rather than requiring separate, isolated confirmation for each criterion.

This approach supports:

- flexibility in delivery and learner pacing
- the integration of learning across units
- and better accommodates diverse learner journeys, particularly for adults returning to education or learners with mixed prior experience.

We are aware of the potential limitations of the CASLO model—such as the risk of learner failure due to narrowly missing a single outcome—and have mitigated this by embedding formative assessment opportunities and maintaining strong internal quality assurance to support valid, reliable, and fair judgements.

By doing so, this qualification respects the CASLO model's intent—to confirm specified learning outcomes—while avoiding overly rigid application of the mastery principle that could undermine learner success or the demonstration of real-world competence.